31 research outputs found

    Air travel with pneumocephalus: a systematic review

    Full text link
    Introduction: Concerns arise when patients with pneumocephalus engage in air travel. How hypobaric cabin pressure affects intracranial air is largely unclear. A widespread concern is that the intracranial volume could relevantly expand during flight and lead to elevated intracranial pressure. The aim of this systematic review was to identify and summarise models and case reports with confirmed pre-flight pneumocephalus. Methods: The terms (pneumocephalus OR intracranial air) AND (flying OR fly OR travel OR air transport OR aircraft) were used to search the database PubMed on 30 November 2021. This search returned 144 results. To be included, a paper needed to fulfil each of the following criteria: (i) peer-reviewed publication of case reports, surveys, simulations or laboratory experiments that focussed on air travel with pre-existing pneumocephalus; (ii) available in full text. Results: Thirteen studies met the inclusion criteria after title or abstract screening. We additionally identified five more articles when reviewing the references. A notion that repeatedly surfaced is that any air contained within the neurocranium increases in volume at higher altitude, much like any extracranial gas, potentially resulting in tension pneumocephalus or increased intracranial pressure. Discussion: Relatively conservative thresholds for patients flying with pneumocephalus are suggested based on models where the intracranial air equilibrates with cabin pressure, although intracranial air in a confined space would be surrounded by the intracranial pressure. There is a discrepancy between the models and case presentations in that we found no reports of permanent or transient decompensation secondary to a pre-existing pneumocephalus during air travel. Nevertheless, the quality of examination varies and clinicians might tend to refrain from reporting adverse events. We identified a persistent extracranial to intracranial fistulous process in multiple cases with newly diagnosed pneumocephalus after flight. Finally, we summarised management principles to avoid complications from pneumocephalus during air travel and argue that a patient-specific understanding of the pathophysiology and time course of the pneumocephalus are potentially more important than its volume. Keywords: Air travel; Flying; Intracranial air; Intracranial gas; Pneumocephalus

    Mobile intraoperative CT-assisted frameless stereotactic biopsies achieved single-millimeter trajectory accuracy for deep-seated brain lesions in a sample of 7 patients

    Full text link
    BACKGROUND Brain biopsies are crucial diagnostic interventions, providing valuable information for treatment and prognosis, but largely depend on a high accuracy and precision. We hypothesized that through the combination of neuronavigation-based frameless stereotaxy and MRI-guided trajectory planning with intraoperative CT examination using a mobile unit, one can achieve a seamlessly integrated approach yielding optimal target accuracy. METHODS We analyzed a total of 7 stereotactic biopsy trajectories for a variety of deep-seated locations and different patient positions. After rigid head fixation, an intraoperative pre-procedural scan using a mobile CT unit was performed for automatic image fusion with the planning MRI images and a peri-procedural scan with the biopsy cannula in situ for verification of the definite target position. We then evaluated the radial trajectory error. RESULTS Intraoperative scanning, surgery, computerized merging of MRI and CT images as well as trajectory planning were feasible without difficulties and safe in all cases. We achieved a radial trajectory deviation of 0.97 ± 0.39 mm at a trajectory length of 60 ± 12.3 mm (mean ± standard deviation). Repositioning of the biopsy cannula due to inaccurate targeting was not required. CONCLUSION Intraoperative verification using a mobile CT unit in combination with frameless neuronavigation-guided stereotaxy and pre-operative MRI-based trajectory planning was feasible, safe and highly accurate. The setting enabled single-millimeter accuracy for deep-seated brain lesions and direct detection of intraoperative complications, did not depend on a dedicated operating room and was seamlessly integrated into common stereotactic procedures

    The modulatory effect of self-paced and cued motor execution on subthalamic beta-bursts in Parkinson's disease: Evidence from deep brain recordings in humans

    Full text link
    Deep brain stimulation (DBS) electrodes provide an unparalleled window to record and investigate neuronal activity right at the core of pathological brain circuits. In Parkinson's disease (PD), basal ganglia beta-oscillatory activity (13-35 Hz) seems to play an outstanding role. Conventional DBS, which globally suppresses beta-activity, does not meet the requirements of a targeted treatment approach given the intricate interplay of physiological and pathological effects of beta-frequencies. Here, we wanted to characterise the local field potential (LFP) in the subthalamic nucleus (STN) in terms of beta-burst prevalence, amplitude and length between movement and rest as well as during self-paced as compared to goal-directed motor control. Our electrophysiological recordings from externalised DBS-electrodes in nine patients with PD showed a marked decrease in beta-burst durations and prevalence during movement as compared to rest as well as shorter and less frequent beta-bursts during cued as compared to self-paced movements. These results underline the importance of beta-burst modulation in movement generation and are in line with the clinical observation that cued motor control is better preserved than self-paced movements. Furthermore, our findings motivate the use of adaptive DBS based on beta-bursts, which selectively trim longer beta-bursts, as it is more suitable and efficient over a range of motor behaviours than conventional DBS

    Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements

    Full text link
    Parkinsonian motor symptoms are linked to pathologically increased beta-oscillations in the basal ganglia. While pharmacological treatment and deep brain stimulation (DBS) reduce these pathological oscillations concomitantly with improving motor performance, we set out to explore neurofeedback as an endogenous modulatory method. We implemented real-time processing of pathological subthalamic beta oscillations through implanted DBS electrodes to provide deep brain electrical neurofeedback. Patients volitionally controlled ongoing beta-oscillatory activity by visual neurofeedback within minutes of training. During a single one-hour training session, the reduction of beta-oscillatory activity became gradually stronger and we observed improved motor performance. Lastly, endogenous control over deep brain activity was possible even after removing visual neurofeedback, suggesting that neurofeedback-acquired strategies were retained in the short-term. Moreover, we observed motor improvement when the learnt mental strategies were applied 2 days later without neurofeedback. Further training of deep brain neurofeedback might provide therapeutic benefits for Parkinson patients by improving symptom control using strategies optimized through neurofeedback

    Whole‐brain microscopy reveals distinct temporal and spatial efficacy of anti‐Aβ therapies

    Full text link
    Many efforts targeting amyloid-β (Aβ) plaques for the treatment of Alzheimer's Disease thus far have resulted in failures during clinical trials. Regional and temporal heterogeneity of efficacy and dependence on plaque maturity may have contributed to these disappointing outcomes. In this study, we mapped the regional and temporal specificity of various anti-Aβ treatments through high-resolution light-sheet imaging of electrophoretically cleared brains. We assessed the effect on amyloid plaque formation and growth in Thy1-APP/PS1 mice subjected to β-secretase inhibitors, polythiophenes, or anti-Aβ antibodies. Each treatment showed unique spatiotemporal Aβ clearance, with polythiophenes emerging as a potent anti-Aβ compound. Furthermore, aligning with a spatial-transcriptomic atlas revealed transcripts that correlate with the efficacy of each Aβ therapy. As observed in this study, there is a striking dependence of specific treatments on the location and maturity of Aβ plaques. This may also contribute to the clinical trial failures of Aβ-therapies, suggesting that combinatorial regimens may be significantly more effective in clearing amyloid deposition. Keywords: Alzheimer's disease; amyloid-beta; brain; light-sheet microscopy; tissue clearin

    Neurosurgery outcomes and complications in a monocentric 7-year patient registry

    Full text link
    Introduction Capturing adverse events reliably is paramount for clinical practice and research alike. In the era of “big data”, prospective registries form the basis of clinical research and quality improvement. Research question To present results of long-term implementation of a prospective patient registry, and evaluate the validity of the Clavien-Dindo grade (CDG) to classify complications in neurosurgery. Materials and methods A prospective registry for cranial and spinal neurosurgical procedures was implemented in 2013. The CDG – a complication grading focused on need for unplanned therapeutic intervention – was used to grade complications. We assess construct validity of the CDG. Results Data acquisition integrated into our hospital workflow permitted to include all eligible patients into the registry. We have registered 8226 patients that were treated in 11994 surgeries and 32494 consultations up until December 2020. Similarly, we have captured 1245 complications on 6308 patient discharge forms (20%) since full operational status of the registry. The majority of complications (819/6308 ​= ​13%) were treated without invasive treatment (CDG 1 or CDG 2). At discharge, there was a clear correlation of CDG and the Karnofsky Performance Status (KPS, rho ​= ​-0.29, slope -7 KPS percentage points per increment of CDG) and the length of stay (rho ​= ​0.43, slope 3.2 days per increment of CDG)

    Establishing analytical algorithms that distinguish patients with Parkinson’s disease from patients with essential tremor based on accelerometric tremor data

    Full text link
    A considerable number of patients presenting with tremor are misdiagnosed resulting in suboptimal treatment and incorrect prognosis. The clinical di↵erential diagnosis of tremor syndromes is challenging and, unfortunately, there is a lack of accurate diagnostic tools that can reliably distinguish between even the most common tremor aetiologies, i. e. Parkinsonian tremor and essential tremor (ET). We introduce a tremor evaluation protocol exploiting specific activating conditions, ‘hands completely prone/stretched’ (action tremor) for ET and ‘hands hanging down’ (rest tremor) for Parkinsonian tremor, in conjunction with novel miniature inertial measurement units (IMUs), which allow for a non-invasive and accurate analysis of tremor. A total of 14 patients with ET and 14 patients with Parkinson’s disease (PD) were recruited from our outpatient movement disorders clinic at the University Hospital Zurich. The total acceleration from the three pairwise-perpendicular accelerometric axes during the 1 minute blocks of the two handpositions were computed and high-passed filtered at 2 Hz. The power spectral density during each block was calculated and summed up over the frequency domain. Tremor increased significantly in PD patients when transitioning from the action to the rest tremor position (Wilcoxon signed rank test, p = 0.0068). Contrarily, tremor increased in 75 % of ET patients during the transition from the rest to the action tremor hands position. Moreover, tremor was significantly higher in PD as compared to ET during the rest tremor hands position (Wilcoxon rank sum test, p = 0.0262). 77 % of patients showing an increase in tremor amplitude from the action to the rest tremor hands position position had PD, while 82 % of patients showing a decrease of the tremor amplitude during the same transition had ET. 1 The findings of this study support an inverse tremor activation pattern for patients with PD vs. ET when transitioning between the rest and action tremor hands position that can be detected by IMUs, thereby assisting in guiding the di↵erential diagnosis. Besides, IMUs are non-invasive, non-obtrusive, light, cheap and could be widely distributed. Thus, this study motivates the incorporation of this promising tool and short clinical assessment protocol into the routine clinical evaluation of patients presenting with tremor. Special focus should be on the tremor pattern during the transition from the rest to the action tremor hands position as well as the tremor amplitude during the rest tremor hands position
    corecore